Constructive Type Classes in Isabelle

نویسندگان

  • Florian Haftmann
  • Markus Wenzel
چکیده

We reconsider the well-known concept of Haskell-style type classes within the logical framework of Isabelle. So far, axiomatic type classes in Isabelle merely account for the logical aspect as predicates over types, while the operational part is only a convention based on raw overloading. Our more elaborate approach to constructive type classes provides a seamless integration with Isabelle locales, which are able to manage both operations and logical properties uniformly. Thus we combine the convenience of type classes and the flexibility of locales. Furthermore, we construct dictionary terms derived from notions of the type system. This additional internal structure provides satisfactory foundations of type classes, and supports further applications, such as code generation and export of theories and theorems to environments without type classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isabelle: The Next 700 Theorem Provers

Isabelle is a generic theorem prover, designed for interactive reasoning in a variety of formal theories. At present it provides useful proof procedures for Constructive Type Theory, various first-order logics, Zermelo-Fraenkel set theory, and higher-order logic. This survey of Isabelle serves as an introduction to the literature. It explains why generic theorem proving is beneficial. It gives ...

متن کامل

Representing Isabelle in LF

LF has been designed and successfully used as a meta-logical framework to represent and reason about object logics. Here we design a representation of the Isabelle logical framework in LF using the recently introduced module system for LF. The major novelty of our approach is that we can naturally represent the advanced Isabelle features of type classes and locales. Our representation of type c...

متن کامل

Extracting a Normalization Algorithm in Isabelle/HOL

We present a formalization of a constructive proof of weak normalization for the simply-typed λ-calculus in the theorem prover Isabelle/HOL, and show how a program can be extracted from it. Unlike many other proofs of weak normalization based on Tait’s strong computability predicates, which require a logic supporting strong eliminations and can give rise to dependent types in the extracted prog...

متن کامل

Isabelle/HOL-NSA — Non-Standard Analysis

3 Construction of Star Types Using Ultrafilters 14 3.1 A Free Ultrafilter over the Naturals . . . . . . . . . . . . . . . 15 3.2 Definition of star type constructor . . . . . . . . . . . . . . . 15 3.3 Transfer principle . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Standard elements . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Internal functions . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006